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2 Overview

topology has geometry in dimension 2: surfaces
topology has geometry for 3-manifolds
surface homeomorphisms have geometry
topology and geometry of rational maps on the Riemann
sphere
related proofs: iteration in Teichmüller space
classification results in complex dynamics: Newton method
current work: extension of theory to new settings,
especially in transcendental world
the role of discrete models . . .
. . . and of intelligent discretization methods
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3 Surfaces and their geometry

Major result of 19th century mathematics

Theorem 1 (Topology of surfaces)

Every closed orientable surface is homeomorphic to a sphere
with g handles (topology of closed surfaces is completely
classified by genus g ∈ N).

Surfaces of genus g = 0 (sphere), g = 1 (torus), g = 3
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4 Surfaces and their geometry

Theorem 2 (Geometry of surfaces)
Every closed surface of genus

g = 0 is homeomorphic to the standard sphere with its
spherical geometry
g = 1 is homeomorphic to a torus with its Euclidean
geometry
g > 1 is homeomorphic to a surface with hyperbolic
geometry.

All these surfaces have constant curvature K > 0 (sphere),
K = 0 (torus), K < 0 (all others): same at all points.

Note: for every g ≥ 1, this (intrinsic) curvature is not equal to
the curvature coming from the embedding into R3!
For fixed g ≥ 1, the surfaces are not necessarily isometric.
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5 What is hyperbolic geometry?

In dimension n ≥ 2, have upper half space
Hn := {(x1, . . . , xn) : xn > 0} with infinitesimal metric
ds := ‖dx‖/xn (Poincaré upper half space model).
Isometric model: Poincaré ball model:
Dn := {(x1, . . . , xn) ∈ Rn : ‖x‖ < 1} with infinitesimal metric
ds = 2‖dx‖/(1− ‖x‖2).

Conclusion in dimension 2: every domain U ⊂ C has geometry:
if U = C then U is spherical, if |C \ U| ≤ 2 then U conformally
equivalent to C or C∗ and Euclidean, and otherwise hyperbolic
(Riemann mapping theorem / uniformization theorem).
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6 The hyperbolic disk and Escher tilings

A tiling of the hyperbolic plane by squares and equilateral
triangles in the work of M. C. Escher: at every vertex there are
3 squares and 3 triangles!
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7 Thurston’s program: geometrization conjecture I

Major theorem of 20th century mathematics:

Conjecture (Thurston’s vision on 3-manifolds, 1980’s)
Every closed oriented 3-manifold is geometric.
More precisely, every closed oriented 3-manifold can be
decomposed in a canonical way into pieces so that each piece
carries one of eight standard geometric structures.

The decomposition is classical (Kneser, Milnor, Jaco-Shalen):
first, every closed 3-manifold can be decomposed into prime
manifolds (essentially equivalent to irreducible: every
embedded 2-sphere bounds a 3-ball).
Thurston conjecture: Every closed oriented prime 3-manifold
can be cut along tori, so that the interior of each of the resulting
manifolds has a geometric structure with finite volume.
Special case of geometrization conjecture: Poincaré conjecture.
Much of it proved by Thurston, in generality by Perelman.
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8 Thurston’s program: geometrization conjecture II

Conjecture (Thurston’s vision on 3-manifolds, 1980’s)
Every closed oriented 3-manifold can be decomposed in a
canonical way into pieces so that each piece carries one of
eight standard geometric structures.

Thurston gave a classification of all relevant geometries:

spherical S3, Euclidean R3, hyperbolic H3,
two products: S2 × R, H2 × R,

three special geometries: Sol, Nil, S̃L2(R)

By far the most frequent of these is hyperbolic geometry, and
Thurston proved several hyperbolization theorems (for instance
on knot complements in 3-sphere).
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9 Classification of surface automorphisms

Theorem 3 (Geometry of surface automorphisms)
Let S be a closed surface and f : S → S be a homeomorphism.
Then up to homotopy f has geometry (pseudo-Anosov) unless
f is periodic or reducible (“geometry or obstruction”).

The pseudo-Anosov geometry of f means the following: there
are two transverse foliations of S by lines with singularities at
finitely many points so that f is a K -stretch (with K > 1) along
the first foliation, and a K -contraction along the second one.
The map f is periodic if there is an n ≥ 1 so that f ◦n is
homotopic to the identity.
The map is reducible if there are finitely many disjoint essential
(=non-contractible) simple closed curves that are permuted by
f , up to homotopy.
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10 Thurston’s hyperbolization theorems

Theorem 4 (Mapping torus is hyperbolic)

Let S be a closed surface, f : S → S be a surface
automorphism. Define the mapping torus
Mf := S × [0,1]/(p,0) ∼ (f (p),1).
Then Mf is hyperbolic if and only if f is pseudo-Anosov.

This uses the classification of surface automorphisms.
Pseudo-Anosov means that f : S → S has geometry.

Theorem 5 (Manifolds that do not fiber over the circle)
Every closed irreducible atoroidal Haken 3-manifold is hyperbolic.

Haken manifold is “sufficiently big”: contains essential
embedded surface S (fundamental group of S injects into
fundamental group of 3-manifold). Atoroidal: no essential torus
(along such tori further decomposition necessary).
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11 Characterization of rational maps

Thurston mapping: a finite degree branched cover f : S2 → S2

with finitely many branch points, and all branch points have
finite orbits (are periodic or preperiodic)

Theorem 6 (Characterization of rational maps)
Every Thurston mapping is either “realized” by a rational map
(i.e., has invariant complex structure: “has geometry”) or it has
a “multicurve obstruction”. — “Geometry or obstruction”

Example of a map
z 7→ pc(z) = z2 + c where the
critical point z = 0 has period 4:
0 7→ c 7→ c2 + c 7→ (c2 + c) + c 7→
((c2+c)2+c)2+c = 0: algebra ad-
mits 8 solutions; how to distinguish
them?
Answer: classification by "Hubbard
trees" (up to homotopy)
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12 Teichmüller space and iteration

Definition 7 (Teichmüller space)
For a closed (topological) surface S, perhaps with finitely many
punctures, the Teichmüller space Teich(S) is the set of pairs
(X , φ), where X is a Riemann surface homeomorphic to S and
φ : S → X is a homeomorphism, subject to the equivalence
relation (X1, φ1) ∼ (X2, φ2) if there exists a conformal
isomorphism h : X1 → X2 so that φ2 = h ◦ φ1 up to homotopy.

All three theorem classes (surface automorphisms, hyper-
bolization of 3-manifolds, characterization of rational maps) are
proved by iteration in a finite-dimensional Teichmüller space: a
fixed point (or a point with minimal distance to image) yields
geometry, otherwise get combinatorial obstruction in form of
invariant multicurve.
A simple closed curve γ ⊂ S is essential if it cannot be
contracted to a point; a multicurve is a finite collection of
disjoint, non-homotopic essential simple closed curves.
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13 Surface automorphisms

Given surface S, have automorphism f : S → S.
Teichmüller space of S consists of pairs (X , φ) where X is a
Riemann surface and φ : S → X is a homeomorphism.
Let δ := inf(d((X , φ), (X , φ ◦ f ) ) (distance in Teichmüller space);
a) if δ = 0 and infimum realized (i.e, there exists a fixed point in
Teichmüller space), then f is periodic;
b) if δ > 0 and infimum realized (i.e., there exists a point with
minimal distance to image), then have extremal geometric
structure on S, yields pseudo-Anosov structure (“geodesic in
Teichmüller space”);
c) in either case, if infimum not realized, then obtain invariant
multicurve on S: f is reducible. (Can decompose S along the
multicurve, obtain surface with boundary punctures, continue).
Details: John Hubbard, Teichmüller theory, vol. 2 (2016).
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14 Hyperbolization of 3-manifolds

Key step in proof: glue two hyperbolic manifolds with boundary
(X1,S1) and (X2,S2) along their boundary by a gluing map
φ : S1 → S2, want it so that the gluing respects hyperbolic
structure so that the gluing result X1 ∪φ X2 becomes hyperbolic.
This “boundary surface matching” involves iteration on
Teichmüller space of S1;
a) fixed point in Teich(S1) yields compatible geometric
structure;
b) non-existence of fixed point yields invariant multicurve in S1;
extends through X into invariant torus: so manifold is not
atoroidal.
Details: John Hubbard, Teichmüller theory, vol. 3/4
(forthcoming).
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15 Characterization of rational maps

Thurston mapping: a branched cover f : S2 → S2 with finitely
many branch points, and all branch points have finite orbits (are
periodic or preperiodic).

Theorem 8 (Characterization of rational maps)
Every Thurston mapping is either “realized” by a rational map
(i.e., has invariant complex structure: “has geometry”) or it has
a “multicurve obstruction”. — “Geometry or obstruction”

Let Pf be the finite set of orbits of branch points of f and
S := (S2,Pf ): sphere with finitely many marked points. Then f
induces iteration on Teich(S): given φ0 : S → (C, φn(P)), then

(S2,Pf ) (C,Pg)

(S2,Pf ) (C,Pg)

-

-

? ?

f g

φ0

φ1 by pull-back of complex struc-
tures and the uniformization
theorem. Then φ0 ∼ φ1 iff
∃ fixed point in Teich iff f is
equivalent to rational map g.
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16 What can Thurston’s “rational map theorem” do?

? Gives explicit form of “multicurve obstruction", but
complicated in practice (f -invariant for which associated matrix
has leading eigenvalue greater at least 1)
? Can be interpreted in terms of moduli of annuli (so necessity
of condition easy to see)
? Serious current activity on checking whether Thurston
criterion is satisfied (including Dylan Thurston)
? Every application of Thurston’s theorem is a major theorem in
its own right:
Step 1: extract from rational map some combinatorial invariant
(tree, graph, lamination, etc)
Step 2: describe the resulting invariants
Step 3: show that each invariant extends to branched cover of S2

Step 4: show that this cover does not have a Thurston
obstruction, so is realized by a rational map.
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17 Three typical uses of Thurston’s theorem

? Classification of postcritically finite polynomials in terms of
Hubbard trees and orbit portraits (Poirier 1990’s, based on
Bielefeld, Fisher, Hubbard).
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? Classification of postcritically finite Newton maps in terms of
extended Newton trees (Lodge, Mikulich, Schleicher 2015).
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18 Classification of postcritically finite Newton Maps

For polynomial p, the associated Newton map is
Np(z) = z − p(z)/p′(z): a rational map usually of same degree.
Colors describe basins of attraction of different roots.
Rough classification by channel diagram: arcs connecting roots
to∞ through basins. Not enough to distinguish different
dynamics: for instance, how do all the little bounded
components of basins connect to each other?
(They are all attached to each other; proof 2006/2016).
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19 Newton maps with attracting cycles

Observation: there are Newton maps that have attracting
cycles of periods 2 or higher: open sets of starting points that
fail to converge to roots.
Question (Smale, 1970’s): give a classification of Newton maps
with this “strange” property.
Lodge, Mikulich, Schleicher 2015: classification of all Newton
maps (postcritically finite). First “large” space of rational maps
with complete classification.
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20 Cubic Newton maps

Simplest non-trivial case of Newton maps:
p(z) = c(z − λ)(z − µ)(z − ν).
Newton dynamics Np(z) = z − p(z)/p′(z) ignores c.
Translation: may assume ν = 0.
Scaling: may assume µ = 1: hence p(z) = z(z − 1)(z − λ).

Classification of cubic Newton maps would involve classification
of all colored components: black ones are those with attracting
cycles. (Serious work by Tan Lei, Roesch, etc).
Space of degree d polynomials has complex dimension d − 2.
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21 Third example: mating of rational maps

Dynamics of polynomials are (relatively) easy to understand;
but how about non-polynomial rational maps?

And even dendrite Julia sets
can be mated...!
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22 Current work I: transcendental Thurston theorem

Project (with graduate student Bayani Hazemach)

Extend Thurston’s theorem from (postcritically finite) rational
maps to (postsingularly finite) transcendental maps.

Transcendental maps are postsingularly finite: leads to iteration
in finite-dimensional Teichmüller space.
Initial work jointly with Hubbard and Shishikura for special case
of exponential maps (2009). Thurston’s proof has many “finite
degree hence finite choice” arguments, these fail for infinite
degree. Fresh approach required.
Should lead to dynamical classification of postsingularly finite
transcendental entire functions. First results by former
undergrads Bastian Laubner and Vlad Vicol (now Princeton).
What are Hubbard trees for transcendental maps? (They don’t
exist, but what do they look like? What are their properties?)
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23 Current work II: Thurston’s theorem and
infinite-dimensional Teichmüller theory

Project (with grad student Kostya Bogdanov and postdoc
Russell Lodge)

Extend Thurston’s theorem from postsingularly finite to some
postsingularly infinite transcendental entire functions.

“Simple” example: classify all maps z 7→ λez , or all maps
z 7→ λ cos z + µ sin z, for which all singular values converge to
∞ under iteration.
Conceptual context: dynamic rays for transcendental entire
functions were introduced by Rottenfußer, Rückert, Rempe,
Schleicher, Annals of Math (2011).
Goal: describe parameter rays (external rays in parameter
space) for this class of transcendental maps.
Problem: this requires iteration in infinite-dimensional
Teichmüller space.
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24 Conclusion / perspectives
“Topology has geometry” in several incarnations:

every surface homeomorphism f : S → S has geometry or a
multicurve obstruction;

every 3-manifold can be decomposed into pieces with geometry;
most important case: hyperbolic geometry

important step: gluing hyperbolic 3-manifolds with “topologically
compatible” boundaries either is possible in compatible way:
yields hyperbolic geometry on union; or multicurve obstruction
on boundaries that leads to essential embedded tori;

every topological postcritically finite branched cover of finite
degree has geometry or a multicurve obstruction

the last result is “fundamental theorem of complex dynamics” for
rational maps, has potential to extend to transcendental
dynamics, and to extend from finite to infinite dimensional
Teichmüller spaces.

how do these extended results carry over to other settings such
as surface automorphisms and 3-manifolds?
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